Fuzzing: Ideas, Roadblocks, and Strategies

Matthis Gordel
TU Berlin
matthis.goerdel@tu-berlin.de

ABSTRACT

Fuzzing - automated testing with randomly generated inputs - is
an essential tool to test and secure important low-level components
of our modern digital infrastructure. The term was coined in the
early nineties and the method proved effective in crashing UNIX
utilities. A wave of innovation in the field was sparked in the mid-
2010’s by the seminal American Fuzzy Lop (AFL), a highly pragmatic
fuzzer. Its main contribution was to make coverage-guided greybox
fuzzing - i.e. fuzzing that focuses on mutating inputs that previously
discovered new execution traces — practical by making the tool fast
and usable. In the following years, many researchers extended AFL
or its approaches by improving key algorithms, adding heuristics to
surpass roadblocks like magic values, or combining greybox-fuzzing
with more sophisticated approaches like symbolic execution. But
with this research output comes the question of how to evaluate
the different approaches in a fair and meaningful way.
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1 INTRODUCTION

Heartbleed [2] is one of most consequential security vulnerabilities
to date [11]. The vulnerability occurred in OpenSSL, an impor-
tant library that is used in many internet-facing services. Interest-
ingly, Bock argues that Heartbleed could have been avoided (i.e.
the bug being found before hitting production) by fuzzing, i.e. test-
ing OpenSSL with automatically generated inputs: In 2015, Bock
demonstrated that it would take the AFL fuzzing engine roughly six
hours to find the vulnerability. His main takeaway was that fuzzing
should be used to detect similar lingering vulnerabilities [9].

The term fuzzing originates from a dark and stormy night in
1988, where interference of a dial-up connection caused scrambled
inputs which in turn crashed core system utilities. Motivated by
the occurrence, a systematic testing of UNIX utilities with random
inputs was facilitated, finding bugs in programs like uniq, make
and csh [21].

Today, more than thirty years later, fuzzing is a vital part of
testing and securing critical software with a vibrant research com-
munity, even though random inputs still crash UNIX utilities [22].

In this paper, we want to give a general overview over the past
and present of the field. In Section 2, we introduce general concepts
of fuzzing, explain terminology, and present a model for the fuzzing
process. Then, in Section 3, we present AFL, a popular and influen-
tial fuzzer that sparked a lot of innovation in the field. In Section 4,
we focus on said innovation, highlighting approaches that were
either implemented on top of AFL or tackles problems that are also
relevant for AFL. Finally, we cover challenges of fuzzing research
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in Section 5, highlighting the complexities of evaluating fuzzers
and obtaining definitive results.

2 A GENERAL FUZZER

In this section, we propose a simple fuzzer and extend it piece by
piece to introduce concepts and terminology.

First, we need a program that we want to test. For the beginning,
we assume a program that consumes its input via standard in. We
call this program the program under test. To find bugs in the program
under test, our fuzzer needs to generate inputs, to run the PUT
with the inputs and to detect crashes or hangs.

2.1 Generating Inputs

In [21], Miller et al. used a small program called fuzz to generate
random input with optional restrictions like only printable charac-
ters and a shell script to execute the program under test. Crashes
are detected by checking for the existence of core files that the op-
erating system creates when a program crashes. As demonstrated
by Miller et al., it is possible to find actual bugs with this approach,
but there are more efficient and effective approaches.

For example, instead of generating input completely at random,
a well-structured input can be used as a starting point and then
be mutated at random. We call such a file a seed and the collection
of seeds the corpus. We call fuzzers that work by mutating seeds
mutational, as opposed to generational fuzzers that generate inputs
without using seeds. This helps with fuzzing programs that expect
a certain structure in the input, like e.g. a media player that expects
the input file to have some specific header, since the mutated seed
is mostly correct as opposed to completely random input, which is
mostly incorrect and might be rejected early by the PUT. Zzuf [14],
initially released in 2006, is a fuzzer that leverages this technique.
It executes a program like the VLC media player with its input, e.g.
a mp4-file, randomly mutates that file and detects crashes of the
program under test.

A third option to generate inputs is to define a grammar that
states how the input shall be structured. The fuzzer then generates
random inputs that adhere to the grammar. We sometimes call these
structure-aware fuzzers smart. Listing 1 shows a grammar used
by the PEACH fuzzer [3] that describes a part of the WAV audio
format.

2.2 Detecting Errors: Sanitizers

With the ability to generate/mutate inputs, we now focus on de-
tecting errors. The fuzzer of Miller et al. simply looked for core
dumps'to detect erroneous executions. While this method has no
false positives, it might miss some program failures that are less
violent. For example, a program could encounter undefined behav-
ior, an out-of-bounds memory access or a data race, maybe even

IFiles created by the operating system after handling a crash of the program.
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Listing 1: PEACH grammar describing a part of the WAV
format (Copied from [24])
<DataModel name="Wav" ref="Chunk">
<String name="ckID" value="RIFF"/>
<String name="WAVE" value="WAVE"/>
<Choice name="Chunks" maxOccurs="30000">
<Block name="FmtChunk" ref="ChunkFmt"/>

<Block name="DataChunk" ref="ChunkData"/>
</Choice>
</DataModel >

corrupting other files on the system, all without crashing. Since for
a crash to occur, the program would have to misbehave in such a
way that the operating system recognizes, e.g. dividing by zero or
accessing a memory region that belongs to another process.

In this situation, sanitizers can be helpful. Sanitizers are dynamic
bug finding tools, widely used in testing C/C++ code and a research
field on their own. They work by adding extra checks and assertions
during compilation. During program execution, these checks search
for incorrect program behavior as it happens [32].

For example, AddressSanitizer (ASan) [29] works by keeping
metadata about which memory regions are accessible and replaces
the malloc and free implementations so that the metadata is kept
up to date. At each memory dereference, the metadata is checked
to confirm that the program actually allocated the memory. While
this causes a slowdown that roughly doubles the execution time of
the program [28], it can help catch crucial bugs. Other sanitizers
are e.g. ThreadSanitizer (TSan) [30], Undefined Behavior Sanitizer
(UBSan) and Effective Type Sanitizer (EffectiveSan) [10].

To leverage a sanitizer for fuzzing, we compile our program
under test with the sanitizer enabled, and then fuzz it. The additional
checks introduced by the sanitizer turn previously silent errors like
undefined behavior into crashes, which then are detected by the
fuzzer.

2.3 Greybox Fuzzing

With our different input-generating methods in place and also
being able to detect crucial types of errors, our fuzzer can already
find bugs, but it is still working randomly, without any plan or
understanding of the program under test besides rough knowledge
of the shape of the input. This is where greybox fuzzing steps in
and revolutionizes fuzzing: We add some more instrumentation to
our program under test, similar to how we added the fuzzers, but
this time the instrumentation is not for detecting errors but rather
to track the code coverage, i.e. which lines of code are executed
when running the PUT with the input. This information can then
be leveraged to find interesting directions in which to mutate the
input.

Assuming we fuzz a media player like VLC by mutating some
mp4 file and also track code coverage: First our fuzzer mutates
e.g. some bits at the end of the file and runs the program with the
inputs, but no new lines covered compared to the execution with
the initial seed. Thus, the fuzzer decides to mutate another region
of the seed file. Now new lines are covered, thus the fuzzer maybe
decides to mutate that region a bit more, in the hope of generating
more input that covers new lines. This approach is called greybox
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Listing 2: Highly specific branch conditions can be handled
by whitebox fuzzers that track and solve the condition while
non-symbolic approaches generally struggle here.
def foo(x: int64):
if x == 0xd9ce994a2f133f02:
return 1 / @
return 1

fuzzing since the fuzzer peeks a little into the program under test
by instrumenting for coverage. The earlier approach without this
coverage feedback is correspondingly called blackbox fuzzing.

2.4 Whitebox Fuzzing

When there’s grey and black, there also has to be white: Whitebox
fuzzing, a term for the related approaches of symbolic execution
and concolic execution involves not only tracking code coverage but
tracks the logical paths through the program. Consider the function
shown in Listing 2.

Except for a case of exceptional luck, a black- or greybox fuzzer
would have to fuzz the function many times to finally guess the
magic value to hit the path that leads to the crash. But a whitebox
fuzzer would execute the function at most twice.

During symbolic execution, the program is not run with con-
crete values (e.g. 42) but with symbolic values that capture path
constraints (e.g. x > 42). So when encountering the branch state-
ment in Listing 2, the symbolic execution engine forks the execu-
tion, once entering the then case and adding the constraint x =
0xd9ce994a2f133f02, once entering the else case and adding the
constraint x # 0xd9ce994a2f133f02. While this prevents the ne-
cessity to re-execute paths of the program, the high overhead of
symbolic interpretation and the constraint solving required to e.g.
check which memory objects a symbolic pointer could point to,
currently make this approach less practical than greybox fuzzing.

Besides symbolic execution, there is concolic execution. Concolic
is a portmaneau of concrete and symbolic. During concolic execution,
the program is run with a concrete input like 42, but additionally,
the path constraints are tracked. After finishing the execution, one
path constraint is picked and negated. Then, a constraint solver
is used to generate a new concrete input that satisfies the new
constraint set, thus reaching the branch not yet taken that cor-
responds to the constraint that was negated. So when a concolic
execution engine runs the code depicted in Listing 2, for the first
time, x might be 42, thus the else branch is taken. But in addition,
the path constraint x # 0xd9ce994a2f133f02 is collected. After
the run, the engine might pick the just collected constraint to be
negated by the solver, thus generating 0xd9ce994a2f133f02 as
the next input. While concolic execution has the advantage of a
much lower execution overhead compared to symbolic execution,
common paths at the beginning have to be re-executed, just like in
greybox fuzzing.

While there is a lot of research involving whitebox fuzzing, this
paper will mostly focus on coverage-based greybox fuzzing, which
is currently - in the sense of industry adoption - the more popular
of the approaches, which might indicate a higher effectiveness. Note
that there is another paper in the CARE seminar focusing solely on
whitebox fuzzing.
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Figure 1: A general model for a fuzzer (Adapted from [19]).
First, the program under test is preprocessed (e.g. instru-
mented to track coverage). Then input is generated, e.g. by
choosing a seed from the corpus and mutating it. Next, the
PUT is run with the input. Then, information about the
run (e.g. newly covered lines) are used to update the state of
the fuzzer. This then influences the scheduling decision, i.e.
which seed to choose next.

InputEval

Table 1: Different fuzzing approaches (Copied from [7]). The
approaches are distinguished by whether program analysis
is used and whether additional feedback from the execution
besides if it crashed or not is obtained.

Blackbox fuzzing  no analysis, no feedback
Greybox fuzzing  no analysis, but coverage feedback
Whitebox fuzzing mostly program analysis

2.5 Summary: A Fuzzing Model

After introducing different fuzzing concepts and terms, we sum-
marize and formalize our understanding. First, Table 1 recaps the
distinction between black-, grey-, and whitebox fuzzing.

Next, we want to formalize our understanding of the fuzzing
process. Manés et al. [19] suggest an abstract model for fuzzing,
depicted in Figure 1 with the following steps, in our case simplified
for greybox fuzzing:

e Preprocess: In which the program under test is instru-
mented to e.g. track coverage, add sanity checks and/or an-
alyzed e.g. to gather extra information for seed scheduling.
as done in [7] or to e.g. extract magic values as done in [25].

o Schedule: In which the next seed is selected.

e InputGen: In which the seed is mutated e.g. by flipping bits.

o InputEval: In which the program under test is run with the
mutated input.

e ConfUpdate: In which a new seed might be added if the
previous mutated seed had some interesting property like
covering new parts of the program.

3 DESIGN AND ARCHITECTURE OF AFL

Fuzzing not only a vibrant academic field but also leveraged by
industry. While the term was coined in academia, many important
fuzzers were created outside of academia, simply to find bugs. The
seminal American Fuzzy Lop (AFL) was created by Zalewski at
Google around 2013, with the explicit goals of speed, reliability and
simplicity, focusing on usefulness rather than novelty [34]. In this
section, we give an overview over its design and architecture.
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Figure 2: AFL’s core algorithm. (Adapted from [35]).

(1) Load user-supplied initial test cases (seeds) into a queue.

(2) Take next seed from the queue.

(3) Attempt to trim the seed to the smallest size that doesn’t
alter the measured behavior of the program,

(4) Repeatedly mutate the seed by flipping bits, setting bytes to
special values like 0, INT_MAX, adding and removing bytes,
etc.

(5) If any of the generated mutations resulted in a new state
transition recorded by the instrumentation, add mutated
output as a new seed in the queue.

(6) Go to 2.

AFL is a mutational greybox-fuzzers, i.e. it generates new inputs
by mutating seeds and tracks coverage information of each execu-
tion. Its basic algorithm is shown in Figure 2. To gather coverage
information, AFL offers a compiler wrapper that adds coverage
instrumentation by injecting roughly the following code at the
beginning of each basic block?:

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location * prev_location]++;
prev_location = cur_location >> 1;

This allows to trace the execution, i.e. it tracks not only which lines
of code are covered but also in which order. Note that collisions or
overflows can occur, which makes this tracing method imperfect.
Still, the instrumentation requires very little overhead, since there
is e.g. no dynamic allocation and the coverage map is sized compact
enough to fit into L2 cache. The potential imprecision of the tracing
is traded off with the speed gained by the approach.

Using the coverage information, AFL searches for inputs that
trigger previously unseen basic block transitions. Those inputs are
then added to the input queue so that they later become starting
points for further fuzzing, i.e. that they become new seeds. This
way, AFL creates a corpus of inputs that trigger new behavior.
Periodically, AFL prunes this corpus, distilling it to a subset that
still covers the same behavior. The pruning also uses a simple
algorithm: AFL rates each input according to execution latency
and file size and then picks for each basic block transition the best-
rated input. For file mutation strategies, AFL flips bits and bytes,
increments and decrements integers or sets integers to interesting
values like 0, 1, 256, MAX_INT etc. While AFL has more features,
this brief overview should give the impression that AFL is very
pragmatic, well-engineered software that focuses on getting the
job done, disregarding novelty for usability. Nevertheless, or maybe
because of this, many research projects based their implementations
on AFL.

4 INNOVATION SINCE AFL

AFL was released in November 2013 and developed continuously
until 2017. While initially not widely known, it received major
attention after finding to bugs that circumvent the initial patch for

2A basic block is a code sequence without any branches or other control flow state-
ments, it has only one entry and one exit point. The programs control flow can be
modeled as a graph with basic blocks as nodes and the jumps etc. as edges.
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Figure 3: Estimation®of fuzzing papers published in major
conferences per year.
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the shellshock vulnerability [9]. With time, the tool found many?
critical bugs in software like GnuPG, OpenSSH, etc., further proving
its effectiveness. But the tool was not only receiving attention from
industry and practitioners aiming to find bugs in their products but
also from researchers that aim to push the capabilities of fuzzing.

While the term fuzzing was coined in the early nineties [21],
research interest increased around the 2015 mark, as shown by the
number of publications in Figure 3. Thus, a few years after AFLs
release, and often explicitly influenced by it, a wave of innovation
in mutational greybox fuzzing started. In this section, we want
to highlight some of these innovations. We focus on influential
approaches that develop or extend a fuzzer, highlighting the key
ideas. Table 2 gives an overview of the papers/work that we present.

Our selection of papers is definitely not comprehensive. Due
to the scope of this paper we focus on approaches that fall fit a
few themes, namely using theory for efficiency and tackling magic
numbers. This is the reason why we for example ignore interesting
approaches like KAFL [27], fuzzing counter measures [13][16], and
much more. We recommend Manés et al. [19] for a much broader
overview.

4.1 Using Theory for Efficiency

In this section, we focus on papers that analyse a certain aspect
(namely: seed scheduling, mutation, mutation scheduling) of AFL’s
algorithm (c.f. Figure 2), then discover some theoretical properties
which then are leveraged to increase the efficiency/capability of
AFL.

4.1.1 AFLFast. Bohme et al. [8] improved AFL’s seed scheduling
algorithm by leveraging insight from probability theory. AFL main-
tains a queue of seeds. It picks a seed from the queue, mutates and
executes the PUT with it a fixed number of times, and then appends
that seed to the end of the queue. If new paths are discovered during
execution, new seeds are also added to the queue. We call the num-
ber of times the seed is mutated when picked from the queue the
energy assigned to the seed. The fact that AFL executes each seed

3The AFL website [36] lists 370 “notable vulnerabilities and other uniquely interesting
bugs that are attributable to AFL”.

“4Data gathered from dblp [1] of papers from the conferences NDSS, S&P, ICSE, USENIX
Security Symposium, ASE, CCS, and ESEC that have “fuzzing” in their title.
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the same amount of times can be expressed as AFL assigning each
seed the same energy. The alternative would be to assign higher
energy to certain seeds, i.e. mutate and execute these seeds more
than other seeds when picked from the queue.

The key observation of Bohme et al. was that AFL’s approach
of same energy for each seed has two major drawbacks: It slows
down the discovery of new seeds, and it focuses the execution on
hot paths, i.e. paths that are already well-explored are more likely
to be explored further.

The intuition for the first problem is the following: The probabil-
ity to detect a new path and thus generating a new seed is not equal
for all seeds. Thus, we first execute a seed only a few times and then
gradually increase how often we execute the seed. Or, rephrased in
with energy-terminology: We initially assign low energy to each
new seed and gradually increase it over time. A metaphor for the
approach could be a strategy for finding Easter eggs: First we search
every room/spot only briefly, looking for simple caches, but with
time we intensify our inspection of every room. But we do not look
into every cupboard in the kitchen before at least glancing into the
living room.

Bohme et al. implemented their improvements to AFL’s seed
scheduling in a fork called AFLFast, which was able to find same
bugs multiple times faster.

AFLFast highlights how a thorough understanding of the fun-
damental theory can greatly improve a practical approach. The
research also re-influenced AFL as Zalewski implemented improve-
ments based on it [37].

4.1.2  AFLGo. After AFLFast, Bohme et al. [7] added the capability
to direct the execution of the fuzzer, i.e. that the fuzzer focuses
on covering a certain location in the program. This can be useful
for patch testing or crash reproduction when given a stack trace.
Directed fuzzing was at the time already possible with whitebox
fuzzing. For this, constraint solving was used to determine which
inputs are required to reach the target location [20][15]. The draw-
back of this approach is its high overhead required to track and
solve constraints. Since greybox fuzzers are currently much more
useful in practice due to their efficiency, it was desirable to imple-
ment directed fuzzing in greybox fuzzing. For this, Bbhme et al.
calculate the approximate distance of each basic block to the target
location when compiling and instrumenting the program under test.
To steer the execution, the energy-based approach from AFLFast is
reused, but instead of giving higher energy to seeds that execute
rather unexplored paths, higher energy is assigned to seeds that
reach closer to the target. The approach outperforms the previous
symbolic execution-based approaches.

4.1.3  AFLSmart. While AFL and comparable greybox fuzzers gen-
erally outperform smart blackbox fuzzers like peach, that use a
grammar to generate inputs that comply with the high-level struc-
ture of the format [24], there is still benefit in giving AFL such ad-
ditional information when fuzzing applications that handle highly
structured inputs like PDFs, PNGs, etc. Pham et al., who also de-
veloped AFLFast and AFLGo, extended AFL so that it can leverage
the input structure specifying grammars of the peach fuzzer men-
tioned in the introduction. They add new mutation operators, so
that the fuzzer mutates the input on the chunk level, i.e. mutating,
duplicating, and deleting chunks instead of bytes.
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Table 2: Notable Developments in Fuzzing since the release of AFL.

Name Conference No. Citations® Main contribution

Driller NDSS 2016 986 tackle magic numbers by concolic execution

AFLFast CCS 2016 786 more efficient exploration via seed scheduling

laf-intel Blogpost 2016 7  tackle magic numbers by splitting comparisons via compiler pass
Vuzzer NDSS 2017 662 tackle magic numbers by extracting cmp immediates, taint analysis
AFLGo CCS 2017 587 directed fuzzing via seed scheduling

T-Fuzz SP 2018 309 tackle magic numbers by patching out roadblocks

REDQUEEN  NDSS 2019 244  tackle magic numbers by input-state correspondence

AFLSmart ICSE 2019 160 tackle structured inputs via PEACH grammars

MOPT USENIX 2019 189 more efficient exploration via mutation operator scheduling
AFL++ USENIX 2020 261 AFL-fork that merges AFLFast, MOPT, REDQUEEN, etc.

* As reported by Google Scholar.

4.1.4 MOPT. Scheduling is an important part of the execution of
AFL. AFLFast discovered that it is beneficial to focus on explor-
ing seeds that discover more new paths. But not only seeds are
scheduled during the execution, but also the mutation operators,
i.e. in which way the seed is mutated (e.g. bit-flip, setting a byte to
0, etc.). Lyu et al. discovered that most new paths are discovered
by certain mutation operators like the single bit-flip. To leverage
this fact, they implement MOPT, which optimizes the scheduling
of mutation operators.

4.2 Magic Numbers and Other Roadblocks

A roadblock hinders a fuzzer from executing certain parts of the
PUT. Roadblocks arise due to the concrete approach of the fuzzer,
thus different fuzzers have different roadblocks. The exploration of
a PUT that expects highly structured inputs by a mutational fuzzer
might be blocked input file validations, while a smart fuzzer with
e.g. a grammar describing the input format can overcome these
hurdles.

Since AFL mutates inputs randomly, it struggles with passing
checks that require very specific inputs. The simplest case is han-
dling magic bytes (in this case: “fixed sequence of bytes at a fixed
offset in the input”) as e.g. shown in Listing 3. If AFL does not have
a seed that reaches the then block, it has to guess the correct values
out of the roughly four billion possible 32-bit integers.

Checksums are even more problematic: here, there is no fixed
value that has to be guessed and might be inferred with some clever
trick, but the specific value depends on the supplied input.

There are different approaches on how to handle these hurdles,
which we will now present.

4.2.1 Driller. Stephens et al. [33] extends AFL by periodically lever-
aging concolic execution to generate new inputs that reach new code
sections. Thus, it blends grey- and whitebox fuzzing. The key in-
tuition of the approach is that the program under test consist of
compartments separated by difficult to pass, highly-specific checks
like checks for magic numbers. To pass these checks, Driller sus-
pends AFL-fuzzing from time to time and instead hands the current
seeds to angr (c.f. [31]), the concolic execution engine. Angr ex-
ecutes the program under test with these seeds and tracks the
path constraints at the encountered branches. It then leverages a

Listing 3: Magic number hindering program exploration
(Adapted from [5])

if (input[42] == @xabadldea) {

/* difficult to reach by fuzzer x/
} else {

/* other code =*/
}

Listing 4: Code from Listing 3 transformed by laf-intel
(Adapted from [5]).
if (input[42] >> 24 == 0xab){
if ((input[42] & 0xffeeee) >> 16 == 0@xad) {
if ((input[42] & oxffeQ) >> 8 == 0x1d) {

if ((input[42] & oxff) == 0Oxea) {
/* much less difficult to reach by fuzzer =x/
133} else {
/* secure code */

}

constraint solver to generate new seeds that reach the previously
unexplored path of the branch statement.

4.2.2 laf-intel. Laf-intel (c.f. [5]) is, just like AFL, an example of
non-academia innovation. It is not a fuzzer or fuzzer-extension
but a collection of LLVM passes. An LLVM pass describes how to
transform parts of a program, e.g. how to simplify the statement
x+1+1 to x+2. LLVM passes are leveraged by LLVM-based compilers
like clang. The laf-intel pass splits up magic value-comparisons in
such a way that the values are easier to guess for AFL. So the
four-byte comparison shown in Listing 3 is transformed into four
one-byte comparisons as shows in Listing 4. This way, AFL only
has to guess a single byte each time, which increases the probability
to reach the desired location from 256~ to 4 - 2567 1.

4.2.3  Vuzzer. Rawat et al. [25] implemented Vuzzer which tack-
les the magic-value problem by analyzing the program under test
before execution, during which hard-coded values (i.e. immediate
parameters of cmp instructions) are extracted, like @xabadl1dea in
the example shown in Listing 3. During execution, the data flow
of the program is analyzed, to determine which input bytes are
compared against the immediate values are compared against. In
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this example, the analysis is trivial assuming that input is the raw
input. With this analysis, Vuzzer would then generate a new input
that sets four bytes at the corresponding offset to the immediate
value that was extracted earlier.

Compared to Driller, Vuzzer chooses a less general, more heuristic-

focused approach, since only comparisons against immediates are
handled.

4.24 T-Fuzz. Peng et al. [23] implemented T-Fuzz which tackles
the magic-value problem in a quite radical way: When it determines
that a specific check is blocking fuzzer progress, it simply removes
the check by patching it out. When T-Fuzz finds a bug in the patched
program, it determines the additional input constraints from the
patched-out checks. If the constraint set is satisfiable, an input that
reaches the bug is generated, if it is not satisfiable, the bug in the
patched program was impossible, and thus a false positive. Lastly,
the unpatched program is run with the generated input to fully
verify that the bug was no false positive.

4.25 REDQUEEN. Aschermann et al. [4] implemented REDQUEEN
which tackles the magic-value problem by generalizing the ap-
proach of Vuzzer. It leverages the key observation that often parts
of the input correspond (quite) directly to the state of memory at
runtime, i.e. that e.g. the bytes @xdeadbeef encountered in mem-
ory at runtime were supplied as input (as opposed to calculated at
runtime).

For this, the inputs of cmp instructions are instrumented to record
actual and expected values, e.g. @x12345678 and @xcafebabe. Dur-
ing the next fuzzing iteration, the previously recorded actual values
(e.g. 9x12345678) are replaced with the corresponding expected
values (e.g. @xcafebabe).

This approach has two advantages over Vuzzer: First, Vuzzer
can only handle branches with hard-coded values, REDQUEEN
can handle all branches where input and state correspond. Second,
Vuzzer’s data flow analysis has a higher overhead than REDQUEENSs
instrument comp and search+replace in input approach, making
REDQUEEN more efficient.

4.3 AFL++: Shared Infrastructure for Further
Research

Since continued development of AFL has come to a halt in 2017
even though there was still interest from community and academia
in the project, Fioraldi et al. [12] decided to fork it as AFL++ to
incorporate patches and improvements. Most notably, they incorpo-
rated the approaches of AFLFast, MOPT, laf-intel and REDQUEEN
into AFL++. They also improved some engineering decisions like
the mechanism how the PUT is executed.

Besides building an improved fuzzer, their goal was also to create
a technical foundation for further fuzzing research. For this they
added APIs to simplify the implementation of new mutation opera-
tors or seed scheduling strategies. This has the additional benefit
of making cross-evaluations like the one shown in Figure 4 easier:
If a research group implements a novel approach with AFL++, they
can easily benchmark the approach against the state-of-the-art
approach implemented in AFL++.
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Figure 4: Results from Fioraldi et al’s cross-evaluation [12].
Each line represents the coverage of AFL++ achieved over
time with certain techniques dis- and enabled. The purple
line represents REDQUEEN, the blue line represents MOPT,
and the orange line represents REDQUEEN+MOPT. The dif-
ference between the two plots is the program under test.
Notice that when fuzzing libpcap, REDQUEEN+MOPT per-
forms best, but when fuzzing bloaty it performs worst for
a long time. This highlights the complexities of comparing
different techniques.
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4.4 A Genealogy of Approaches

There are several interesting connections between the different
fuzzers, which we tried to visualize in Figure 6.

AFLFast introduces the idea of energy-based scheduling, which
was incorporated into e.g. Vuzzer. The energy-based scheduling
approach not only improved scheduling, but it also laid the foun-
dation for directed fuzzing, which was implemented by changing
the energy-assignment from focusing on cold paths to focusing on
reaching towards the target location.

The idea of laf-intel to mutate progress-hindering cmp instruc-
tions was extended in T-Fuzz that completely removes such instruc-
tions.

Vuzzer also focuses on cmp instructions but instead extracts
the magic values and uses data flow analysis to determine the
corresponding input bytes. REDQUEEN improves this approach by
removing the necessity of data flow analysis via the input-state-
correspondence heuristic, significantly reducing overhead.

Also, T-Fuzz and Driller (which is based upon the concolic exe-
cution engine angr) both incorporate symbolic/concolic execution
(thus the grey and white fill color since grey- and whitebox fuzzing
are combined).

While this genealogy is far from complete, it hopefully shows
how implementations lay the foundations for further research
and how ideas are reapplied and recontextualized in different ap-
proaches.

5 CURRENT CHALLENGES IN FUZZING

In the previous section, we presented different approaches, that
all aim to improve fuzzing. But it turns out that it is often not
so simple to show that one approach is superior to another. In
this section we want to focus on two intertwined challenges of
fuzzing research: First, we highlight the difficulties in comparing
different fuzzers against each other. Then, we point to the fact that
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Figure 6: A genealogy of fuzzers building upon or influenced by AFL. A grey backgroud represents greybox fuzzing, a white
background whitebox fuzzing. Two-colored nodes leverage both approaches. The rectangle subgroups aim to highlight the

theme of contribution.

developing a fuzzer is a complex engineering endeavour, where (mis-
Jengineering can substantially influence - or, more pessimistically:
skew — the outcome.

5.1 Comparing Fuzzers

Current fuzzing publications that propose new approaches gen-
erally evaluate their approach empirically by benchmarking their
fuzzer. While empirical research is of course a good idea, evaluating
complex systems like fuzzers has its inherent challenges. Klees et
al. [17] and Li et al. [18] both highlight these challenges.

Klees et al. first propose the core parts of an evaluation: A base-
line like plain AFL to compare against, different PUTs, one or more
performance metrics like no. of unique bugs found of line coverage,
and then conducting a sufficient number of trials. But with each
of those parts come challenges: Differences between the baseline
fuzzer and the to-be evaluated fuzzer can make for an uneven com-
parison, e.g. if the baseline fuzzer is implemented in an inherently
slower programming language. If possible, it would be advisable to
implement the new technique on top of a high-quality fuzzer like
done by AFLFast, MOPT, etc. As already highlighted in Figure 4,
the chosen PUT also strongly influences fuzzer effectiveness. Per-
formance metrics can also be difficult: Simply counting the number

of times the fuzzer was able to crash the PUT is obviously a bad
idea, since this would reward a fuzzer that finds a single bug and
then generates many inputs that trigger that bug. A much better
metric would be the number of distinct bugs found by the fuzzer,
but this of course requires the work of debugging and fixing the
PUT until the fuzzer cannot find bugs anymore. Another good
metric could be line coverage since a fuzzer that can surpass more
hurdles/roadblocks than the baseline should be able to translate
this advantage into more lines covered. Another big problem is the
statistical significance of the results: Klees et al. highlighted that
multiple runs of the same fuzzer with the same PUT can have a
high variance, as shown in Figure 7. Thus, it is important to not
only have one run or simple calculate the mean of all runs but to
also mention confidence intervals.

To tackle these challenges, Klees et al. recommend to use multiple
trials in combination with statistical tests to show significance,
using a diverse set of PUTs and long timeouts. They identify the
curation of a suite of PUTs for benchmarking as an important area
of future work. Li et alfried to create such a benchmark suite with
Unifuzz [18] but it seems that their proposed framework didn’t
have a lasting impact since the github repositories are stale since
roughly three years.
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Figure 7: Variance of different evaluation runs (Copied
from [17]). The solid lines show the mean of all runs, the
densely dashed lines show confidence intervals and the
sparsely dashed lines show the minimum and maximum
values recorded. We see that AFLFast might outperform AFL
is some runs by a big margin, but in other runs AFL outper-
forms the mean of AFLFast’s performance.
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5.2 Idea vs. Implementation

Bohme et al. [6] summarized the discussions of researchers and
practitioners regarding current challenges in fuzzing. One interest-
ing topic, especially in the context of this paper, is the difficulty
of evaluating and comparing different fuzzers. While it is even dif-
ficult to compare two fuzzers where one is a direct extension of
the other (c.f. [17]), it is even more difficult when the fundamental
implementations differ. As Rizzi et al. [26] demonstrated by review-
ing extensions of the KLEE symbolic execution engine (a popular
whitebox fuzzer), the improvement gained from a novel technique
can be overshadowed by improvements gained simply from fixing
mis-engineered parts of the base-tool like a broken cache.

While greybox fuzzers have a much higher practical adoption
than KLEE and other symbolic execution tools, this still puts a
burden on the implementor of novel techniques to ideally match
the high quality, efficient code written by Zalewski and others to
not skew research findings. This also makes comparing ideas really
difficult: Is A a better technique than B since it outperforms it by a
factor of x, or was A simply profiled more thoroughly?

The discussion around FidgetyAFL [37] might be a prototypi-
cal example of discussions about implementation vs. idea and the
difficulty of proving that one approach is better than the other.

5.3 Other Challenges

Bohme et al.[6] give a great overview of other current challenges
to fuzzing that do not fit the theme of this paper like the problems
involving stateful systems of exotic targets like microcontrollers.
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6 CONCLUSION

In this paper, we aimed for a broad overview of recent research
in fuzzing, focusing especially on greybox fuzzing, AFL and the
research inspired and built on top of it.

We highlighted how Zalewski created with AFL a solid founda-
tion that turned out to be a great facilitator of research. We then
highlighted how different research endeavors built on top of each
other. Furthermore, we contributed a sketch of a genealogy of AFL
in which we showed the connections between different research
projects.

Lastly, we focused on the current challenges in the field, namely
the intricacies of evaluating fuzzers and the dependence on systems
engineering which requires extensive implementation effort to try
out new ideas and makes comparisons of those challenging.
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